El Promedio Móvil Ponderado Exponencialmente (EWMA) es una estadística para monitorear el proceso que promedia los datos de una manera que da menos y menos peso a los datos a medida que son eliminados en el tiempo. Comparación del diagrama de control de Shewhart y las técnicas del diagrama de control de EWMA Para la técnica de control de gráficos de Shewhart, la decisión sobre el estado de control del proceso en cualquier momento (t) depende únicamente de la medición más reciente del proceso y, El grado de veracidad de las estimaciones de los límites de control a partir de datos históricos. Para la técnica de control EWMA, la decisión depende de la estadística EWMA, que es un promedio exponencialmente ponderado de todos los datos anteriores, incluyendo la medición más reciente. Mediante la elección del factor de ponderación (lambda), el procedimiento de control EWMA puede hacerse sensible a una deriva pequeña o gradual en el proceso, mientras que el procedimiento de control Shewhart sólo puede reaccionar cuando el último punto de datos está fuera de un límite de control. Definición de EWMA La estadística que se calcula es: mbox t lambda Yt (1-lambda) mbox ,,, mbox ,,, t 1,, 2,, ldots ,, n. Donde (mbox 0) es la media de los datos históricos (objetivo) (Yt) es la observación en el tiempo (t) (n) es el número de observaciones a monitorear incluyendo (mbox 0) (0 Interpretación del gráfico de control EWMA El rojo Puntos son los datos en bruto la línea irregular es la estadística EWMA con el tiempo. El gráfico nos dice que el proceso está en control porque todos (mbox t) se encuentran entre los límites de control. No obstante, parece que hay una tendencia hacia arriba durante los últimos 5 Durante los años, los técnicos han encontrado dos problemas con el promedio móvil simple El primer problema reside en el marco temporal de la media móvil (MA).La mayoría de los analistas técnicos creen que la acción de los precios. El precio de cierre de las acciones, no es suficiente de lo que dependen para predecir correctamente comprar o vender las señales de la acción de cruce de MA. Para resolver este problema, los analistas ahora asignar más peso a los datos de precios más recientes mediante el uso exponencial de la media móvil suavizada (EMA) Por ejemplo, usando un MA de 10 días, un analista tomaría el precio de cierre del décimo día y multiplicaría este número por 10, el noveno día por nueve, Octavo día a las ocho y así sucesivamente a la primera de la MA. Una vez que se ha determinado el total, el analista dividirá el número por la adición de los multiplicadores. Si agrega los multiplicadores del ejemplo de MA de 10 días, el número es 55. Este indicador se conoce como el promedio móvil ponderado linealmente. (Para la lectura relacionada, echa un vistazo a los promedios móviles simples hacen que las tendencias se destacan.) Muchos técnicos son creyentes firmes en el promedio móvil exponencialmente suavizado (EMA). Este indicador se ha explicado de muchas maneras diferentes que confunde tanto a los estudiantes como a los inversores. Tal vez la mejor explicación viene de John J. Murphys Análisis Técnico de los Mercados Financieros, (publicado por el Instituto de Nueva York de Finanzas, 1999): El exponencialmente suavizado media móvil se ocupa de los dos problemas asociados con el promedio móvil simple. En primer lugar, el promedio suavizado exponencial asigna un mayor peso a los datos más recientes. Por lo tanto, es una media móvil ponderada. Pero si bien asigna menor importancia a los datos de precios pasados, incluye en su cálculo todos los datos en la vida útil del instrumento. Además, el usuario puede ajustar la ponderación para dar mayor o menor peso al precio de los días más recientes, que se agrega a un porcentaje del valor de días anteriores. La suma de ambos valores porcentuales se suma a 100. Por ejemplo, el precio de los últimos días se podría asignar un peso de 10 (.10), que se agrega a los días anteriores peso de 90 (.90). Esto da el último día 10 de la ponderación total. Esto sería el equivalente a un promedio de 20 días, al dar al precio de los últimos días un valor menor de 5 (0,05). Figura 1: Promedio móvil suavizado exponencialmente El gráfico anterior muestra el índice Nasdaq Composite desde la primera semana de agosto de 2000 hasta el 1 de junio de 2001. Como puede ver claramente, la EMA, que en este caso está usando los datos de cierre de precios en un De nueve días, tiene señales de venta definitiva el 8 de septiembre (marcado por una flecha negra hacia abajo). Este fue el día en que el índice se rompió por debajo del nivel de los 4.000. La segunda flecha negra muestra otra pierna abajo que los técnicos esperaban. El Nasdaq no pudo generar suficiente volumen e interés de los inversores minoristas para romper la marca de 3.000. Luego se zambulló de nuevo hasta el fondo en 1619.58 el 4 de abril. La tendencia alcista del 12 de abril está marcada por una flecha. Aquí el índice cerró en 1,961.46, y los técnicos comenzaron a ver a los gestores de fondos institucionales comenzando a recoger algunos negocios como Cisco, Microsoft y algunos de los temas relacionados con la energía. Cómo calcular los promedios móviles ponderados en Excel usando el suavizado exponencial Análisis de datos Excel para los maniquíes, 2ª edición La herramienta Exponential Smoothing en Excel calcula el promedio móvil . Sin embargo, el suavizado exponencial pesa los valores incluidos en los cálculos del promedio móvil de modo que los valores más recientes tengan un mayor efecto en el cálculo promedio y los valores antiguos tengan un efecto menor. Esta ponderación se realiza a través de una constante de suavizado. Para ilustrar cómo funciona la herramienta Exponential Smoothing, supongamos que vuelve a examinar la información diaria promedio sobre la temperatura. Para calcular las medias móviles ponderadas usando el suavizado exponencial, realice los siguientes pasos: Para calcular una media móvil suavizada exponencialmente, primero haga clic en el botón de comando Análisis de datos de la barra de datos. Cuando Excel muestra el cuadro de diálogo Análisis de datos, seleccione el elemento Exponential Smoothing de la lista y, a continuación, haga clic en Aceptar. Excel muestra el cuadro de diálogo Exponential Smoothing. Identificar los datos. Para identificar los datos para los que desea calcular un promedio móvil exponencialmente suavizado, haga clic en el cuadro de texto Rango de entrada. A continuación, identifique el rango de entrada, ya sea escribiendo una dirección de intervalo de hoja de cálculo o seleccionando el intervalo de hoja de cálculo. Si su rango de entrada incluye una etiqueta de texto para identificar o describir sus datos, active la casilla de verificación Etiquetas. Proporcione la constante de suavizado. Introduzca el valor de la constante de suavizado en el cuadro de texto Factor de amortiguación. El archivo de Ayuda de Excel sugiere que utilice una constante de suavizado de entre 0,2 y 0,3. Sin embargo, presumiblemente, si usa esta herramienta, tiene sus propias ideas acerca de cuál es la constante de suavizado correcta. (Si usted no tiene ni idea acerca de la constante de suavizado, tal vez no debería usar esta herramienta.) Dígale a Excel dónde colocar los datos de promedio móvil suavizado exponencialmente. Utilice el cuadro de texto Rango de salida para identificar el intervalo de hoja de cálculo en el que desea colocar los datos del promedio móvil. En el ejemplo de la hoja de cálculo, por ejemplo, coloque los datos del promedio móvil en el rango de hoja de cálculo B2: B10. (Opcional) Diagrama los datos suavizados exponencialmente. Para graficar los datos exponencialmente suavizados, seleccione la casilla de verificación Salida del gráfico. (Opcional) Indica que desea que se calcula la información de error estándar. Para calcular los errores estándar, seleccione la casilla de verificación Estándar Errores. Excel sitúa los valores de error estándar junto a los valores de la media móvil exponencialmente suavizados. Una vez que haya terminado de especificar qué información de media móvil desea calcular y dónde desea colocarla, haga clic en Aceptar. Excel calcula la información del promedio móvil.
No comments:
Post a Comment